279 research outputs found

    Mitochondrial DNA in the sea urchin Arbacia lixula: evolutionary inferences from nucleotide sequence analysis.

    Get PDF
    From the stirodont Arbacia lixula we determined the sequence of 5,127 nucleotides of mitochondrial DNA (mtDNA) encompassing 18 tRNAs, two complete coding genes, parts of three other coding genes, and part of the 12S ribosomal RNA (rRNA). The sequence confirms that the organization of mtDNA is conserved within echinoids. Furthermore, it underlines the following peculiar features of sea urchin mtDNA: the clustering of tRNAs, the short noncoding regulatory sequence, and the separation by the ND1 and ND2 genes of the two rRNA genes. Comparison with the orthologous sequences from the camarodont species Paracentrotus lividus and Strongylocentrotus purpuratus revealed that (1) echinoids have an extra piece on the amino terminus of the ND5 gene that is probably the remnant of an old leucine tRNA gene; (2) third-position codon nucleotide usage has diverged between A. lixula and the camarodont species to a significant extent, implying different directional mutational pressures; and (3) the stirodont-camarodont divergence occurred twice as long ago as did the P. lividus-S. purpuratus divergence

    Evaluation of virucidal activity of fabrics using feline coronavirus

    Get PDF
    Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2) is an enveloped RNA virus responsible for the 2019 coronavirus disease (COVID-19) that represents a global health threat, causing an ongoing pandemic in many countries and territories. WHO recommendations emphasize the importance of all personal protective equipment (PPE) that can interrupt COVID-19 transmission. The textile industry and scientists are developing hygienic fabrics by the addition of or treatment with various antimicrobial and antiviral compounds. Methods for determining the antiviral activity of fabrics are reported in the International Standards Organization (ISO) 18184 (2019) guidelines. Three different fabric samples treated with silver derivate, copper derivative and a not treated cotton fabric used as control were examined and put in contact with a suspension of feline coronavirus (FCoV). After 2 h of incubation a significant decrease of viral titer, as high as 3.25 log10 Tissue Culture Infectious Dose (TCID)50/50 μl, in feline cells was observed in treated fabrics, with respect to not treated fabrics. In this study, we optimized laboratory methods to evaluate the virucidal activity of silver- and copper treated cotton- based fabrics against coronavirus, using FCoV suitable as a surrogate of SARS-CoV-2 but safe for laboratory technicians

    An outbreak of neonatal enteritis in buffalo calves associated with astrovirus

    Get PDF
    Background: Enteritis of an infectious origin is a major cause of productivity and economic losses to cattle producers worldwide. Several pathogens are believed to cause or contribute to the development of calf diarrhea. Astroviruses (AstVs) are neglected enteric pathogens in ruminants, but they have recently gained attention because of their possible association with encephalitis in humans and various animal species, including cattle. Objectives: This paper describes a large outbreak of neonatal diarrhea in buffalo calves (Bubalus bubalis), characterized by high mortality, which was associated with an AstV infection. Methods: Following an enteritis outbreak characterized by high morbidity (100%) and mortality (46.2%) in a herd of Mediterranean buffaloes (B. bubalis) in Italy, 16 samples from buffalo calves were tested with the molecular tools for common and uncommon enteric pathogens, including AstV, kobuvirus, and torovirus. Results: The samples tested negative for common enteric viral agents, including Rotavirus A, coronavirus, calicivirus, pestivirus, kobuvirus, and torovirus, while they tested positive for AstV. Overall, 62.5% (10/16) of the samples were positive in a single round reverse transcription polymerase chain reaction (PCR) assay for AstV, and 100% (16/16) were positive when nested PCR was performed. The strains identified in the outbreak showed a clonal origin and shared the closest genetic relationship with bovine AstVs (up to 85% amino acid identity in the capsid). Conclusions: This report indicates that AstVs should be included in a differential diagnosis of infectious diarrhea in buffalo calves

    Enumeration of distinct mechanically stable disk packings in small systems

    Full text link
    We create mechanically stable (MS) packings of bidisperse disks using an algorithm in which we successively grow or shrink soft repulsive disks followed by energy minimization until the overlaps are vanishingly small. We focus on small systems because this enables us to enumerate nearly all distinct MS packings. We measure the probability to obtain a MS packing at packing fraction Ï•\phi and find several notable results. First, the probability is highly nonuniform. When averaged over narrow packing fraction intervals, the most probable MS packing occurs at the highest Ï•\phi and the probability decays exponentially with decreasing Ï•\phi. Even more striking, within each packing-fraction interval, the probability can vary by many orders of magnitude. By using two different packing-generation protocols, we show that these results are robust and the packing frequencies do not change qualitatively with different protocols.Comment: 4 pages, 3 figures, Conference Proceedings for X International Workshop on Disordered System

    The complete Tirant transposable element in Drososphila melanogaster shows a structural relationship with retrovirus-like retrotransposons

    Get PDF
    Abstract We have determined the structure and organization of Tirant, a retrotransposon of Drosophila melanogaster reported in literature to be responsible for four independent mutations. Tirant is a long terminal repeat (LTR) retrotransposon 8527 bp long. It possesses three open reading frames (ORF ) encoding Gag, Pol and Env proteins with a strong similarity with ZAM, a recently identified member of the gypsy class of retrovirus-like mobile elements. Molecular analysis of the Tirant genomic copies present in four D. melanogaster strains revealed that most of them are defective, non-autonomous elements that differ in the position and extension of the conserved internal portion. Defective elements lacking the Gag ORF but retaining the Env ORF are abundant in heterochromatin. Four discrete Tirant transcripts are observed during embryogenesis in the strain Oregon-R, the smaller of which, 1.8 kb in size, originates from the splicing of a primary transcript and leads to a subgenomic RNA coding for the Env product

    Coalescent-based genome analyses resolve the early branches of the euarchontoglires

    Get PDF
    Despite numerous large-scale phylogenomic studies, certain parts of the mammalian tree are extraordinarily difficult to resolve. We used the coding regions from 19 completely sequenced genomes to study the relationships within the super-clade Euarchontoglires (Primates, Rodentia, Lagomorpha, Dermoptera and Scandentia) because the placement of Scandentia within this clade is controversial. The difficulty in resolving this issue is due to the short time spans between the early divergences of Euarchontoglires, which may cause incongruent gene trees. The conflict in the data can be depicted by network analyses and the contentious relationships are best reconstructed by coalescent-based analyses. This method is expected to be superior to analyses of concatenated data in reconstructing a species tree from numerous gene trees. The total concatenated dataset used to study the relationships in this group comprises 5,875 protein-coding genes (9,799,170 nucleotides) from all orders except Dermoptera (flying lemurs). Reconstruction of the species tree from 1,006 gene trees using coalescent models placed Scandentia as sister group to the primates, which is in agreement with maximum likelihood analyses of concatenated nucleotide sequence data. Additionally, both analytical approaches favoured the Tarsier to be sister taxon to Anthropoidea, thus belonging to the Haplorrhine clade. When divergence times are short such as in radiations over periods of a few million years, even genome scale analyses struggle to resolve phylogenetic relationships. On these short branches processes such as incomplete lineage sorting and possibly hybridization occur and make it preferable to base phylogenomic analyses on coalescent methods

    Analysis of among-site variation in substitution patterns

    Get PDF
    Substitution patterns among nucleotides are often assumed to be constant in phylogenetic analyses. Although variation in the average rate of substitution among sites is commonly accounted for, variation in the relative rates of specific types of substitution is not. Here, we review details of methodologies used for detecting and analyzing differences in substitution processes among predefined groups of sites. We describe how such analyses can be performed using existing phylogenetic tools, and discuss how new phylogenetic analysis tools we have recently developed can be used to provide more detailed and sensitive analyses, including study of the evolution of mutation and substitution processes. As an example we consider the mitochondrial genome, for which two types of transition deaminations (C⇒T and A⇒G) are strongly affected by single-strandedness during replication, resulting in a strand asymmetric mutation process. Since time spent single-stranded varies along the mitochondrial genome, their differential mutational response results in very different substitution patterns in different regions of the genome

    Evidence of exposure to SARS-CoV-2 in cats and dogs from households in Italy

    Get PDF
    SARS-CoV-2 emerged from animals and is now easily transmitted between people. Sporadic detection of natural cases in animals alongside successful experimental infections of pets, such as cats, ferrets and dogs, raises questions about the susceptibility of animals under natural conditions of pet ownership. Here, we report a large-scale study to assess SARS-CoV-2 infection in 919 companion animals living in northern Italy, sampled at a time of frequent human infection. No animals tested PCR positive. However, 3.3% of dogs and 5.8% of cats had measurable SARS-CoV-2 neutralizing antibody titers, with dogs from COVID-19 positive households being significantly more likely to test positive than those from COVID-19 negative households. Understanding risk factors associated with this and their potential to infect other species requires urgent investigation

    Bacterial Diversity in Oral Samples of Children in Niger with Acute Noma, Acute Necrotizing Gingivitis, and Healthy Controls

    Get PDF
    Noma is a devastating gangrenous disease that leads to severe facial disfigurement, but its cause remains unknown. It is associated with high morbidity and mortality and affects almost exclusively young children living in remote areas of developing countries, particularly in Africa. Several factors have been linked to the disease, including malnutrition, immune dysfunction, lack of oral hygiene, and lesions of the mucosal gingival barrier, particularly the presence of acute necrotizing gingivitis, and a potentially non-identified bacterial factor acting as a trigger for the disease. This study assessed the total bacterial diversity present in 69 oral samples of 55 children in Niger with or without acute noma or acute necrotizing gingivitis using culture-independent molecular methods. Analysis of bacterial composition and frequency showed that diseased and healthy site bacterial communities are composed of similar bacteria, but differ in the prevalence of a limited group of phylotypes. We failed to identify a causative infectious agent for noma or acute necrotizing gingivitis as the most plausible pathogens for both conditions were present also in sizeable numbers in healthy subjects. Most likely, the disease is initiated by a synergistic combination of several bacterial species, and not a single agent
    • …
    corecore